Визначення теплопровідності брикетів
Прискореного науково - технічного прогресу пов'язано з повним ЗАБЕЗПЕЧЕННЯМ потреб країни в паливо - енергетичних ресурсах. В условиях їх дефіціту Надзвичайно Важлива Значення набуває питання інтенсіфікації ТЕПЛОЕНЕРГЕТИЧНА процесів у зв'язку з переходом на більш Високі режімні параметрами. Більшість СУЧАСНИХ виробництв супроводжується теплотехнологічнімі процесами, від правильного ведення якіх поклади Продуктивність и якість продукції, что віпускається. У зв'язку з ЦІМ, а такоже проблемами создания безвідходної технології, охорони навколишнього середовища та енергозберігаючої політики значний збільшілась роль визначення оптимальних теплових параметрів проведення технологічних операцій. Так, якість Освоєння брикетів рідкім Чавун пов'язана з обміном енергією в тепловій и механічній формах, а такоже властівостямі тіл, что вікорістовується в ціх процесах. Розрахунок оптимальних теплотехнічних показніків дозволити Встановити найвігідніші умови протікання процесів в киснево конвертері, а такоже візначіті шляхи Підвищення їх ефектівності.
Сукупність Інформації щодо передачі тепла в брикетах и условиях теплообміну на їх поверхні складає Сутність постановки задачі теплопровідності. Така інформація входити в загально виде в Рівняння и Допоміжні співвідношення, Які пов'язують между собою задані Параметри з визначеними величинами. Сукупність таких рівнянь и СПІВВІДНОШЕНЬ назівають математичность формулюванням задачі або математичность моделлю. При математичность опісанні теплопровідності материал брикету представляється як суцільне середовище, мікроскопічній Механізм теплопровідності НЕ розглядається, а всі характеристики процеса вважаються неперервно функціямі просторова координат и годині. Процес перенесеного теплоти зумовленій наявністю різниці температур между Речовини, что вступають в реакцію. Температурний стан тела або системи тіл характерізується температурний полем, під Якім розуміється сукупність міттєвіх значень температур в усіх точках простору, что розглядається. В загально виде Рівняння температурного поля має вигляд: t = (x, y, z ,?), де t - температура-x, y, z - координати точок-? - Година. Таке температурне поле назівається нестаціонарне. Геометричність місце точок тілу (брикету), что має в Сейчас годині однаково температуру Т, назівають ізотермічною поверхні. Розділення таких поверхонь площинах дает сукупність Ізотерм (рис.1). Найбільш різко температура змінюється в напрямку нормалі n до ізотермічної поверхні. Межа відношення? Lim? (N? 0) (? T /? N) = ???? T /? N = qradT? назівається градієнтом температури. Це вектор, что напрямків по нормалі до ізотермічної поверхні в бік зростання температури. Загальна Кількість теплоти, что передається в процесі теплообміну через ізотермічну поверхню площини F з Пліній годині?, Позначімо Q? . Кількість теплоти, что передається через поверхню брикету в одиницю часу, назівається теплового потоку Q. поверхнево щільність теплового потоку (теплове НАВАНТАЖЕННЯ) q - тепловий потік через одиницю поверхні. Кількість теплоти, тепловий потік и его щільність пов'язані между собою співвідношенням: Q? =? _ 0 ^ ??? _ F ^ 0 ?? qdFd? -? Q =? _ F ^ 0? QdF.Інтенсівність передачі теплоти характерізується поверхнево щільністю теплового потоку q, тобто Кількість теплоти, что передається в одиницю часу через одну одиницю площади ізотермічної поверхні. Зв'язок между градієнтом температури и вектором щільності теплового потоку q встановлюється відповідно гіпотезі Фур'є співвідношенням: q = -? grad T. Невід'ємній коефіцієнт пропорційності?, что назівається коефіцієнтом теплопровідності, поклади від матеріалу тела, его Структури и температури та візначається експериментально. Особливості конкретних процес, а самє нагрівання брикетів рідкім Чавун з їх подалі розплавленням, встановлюється умів однозначності, Які складаються Із геометричних, фізічніх, годин (або початкових) i граничних умов. В ПЕРШИХ двох містяться Відомості про форму и розмір тела (брикету) i діючіх в его об'ємі джерел теплоти. Початкові и граничні умови об'єднуються загальною назв - крайові умови. Смороду вказують на Особливості протікання процеса в часі. Граничні умови при якіх задаються температура середовища, что оміває Тіло tж и коефіцієнтом тепловіддачі? между поверхні тела и навколішнім СЕРЕДОВИЩА.
У відповідності з законом Ньютона - Ріхмана щільність теплового потоку, что передається поверхні тілу (брикетів) навколішнім СЕРЕДОВИЩА (чавун), q =? (Tст - tж).
Передача теплоти від одного теплоносія (чавуну) до твердої стінкі назівають теплопередачі. Особливості протікання процеса на поверхні твердого тіла при теплопередачі візначається граничних умів третього роду, Які характеризуються температурами рідін з обидвох СТОРІН тілу, а такоже відповіднімі коефіцієнтамі тепловіддачі. Процес теплопередачі через однорідну ПЛАСКЕ стінку товщина? збережений на рис.1. Задані коефіцієнт теплопровідності стінкі?, Температура Рідини tж1 и tж2, КОЕФІЦІЄНТИ тепловіддачі? 1 і? 2. Звітність, візначіті тепловий потік від гарячої Рідини до стінкі и температури на поверхні стінкі tст1 и tст2.
Щільність теплового потоку від гарячої Рідини до стінкі візначається за рівнянням:), q =? (Tж1 - tст1).